Skip to main content
Log in

Wood Building Construction: Trends and Opportunities in Structural and Envelope Systems

  • Wood Structure and Function (A Koubaa, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The main goal of this study was to review the latest developments in the use of wood-based building materials and systems over the last 5 years. The methodology was carried out by using the systematic review procedure. This study considered only peer-reviewed articles written in English published over the last 5 years (2018 to 2022) on materials used in structural systems and building envelopes.

Recent Findings

The energy demand for cooling and heating represents from 40 to 60% of a building’s energy consumption depending on the energy mix. Every increase in energy efficiency increases the pressure on the energy embedded in the materials. In this context, bio-based and especially wood-based materials are gaining popularity. Their use is significant in structural and envelope systems, making them a powerful tool for working on both efficiency and embedded energy. Furthermore, the building construction industry is among the most significant in the economy of industrialized countries.

Summary

Forests are a carbon asset for our societies. Since buildings have been identified as a global warming mitigation tool, an increase in the use of wood and bio-based products should be considered. To support a better scientific understanding of building carbon sequestration under climate changes, a thorough understanding of structural and envelope systems is needed. Various materials are used in these complex systems, and a variety of assembly options are available. In structural systems, research has tended to be incremental over the last 5 years, with a focus on prefabrication and hybrid structures. As new designs and materials are introduced in the future, building physics principles will become increasingly important to ensure the quality of building envelopes. This review presents the latest research related to wood structural and envelope systems to support their use in the construction industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Borges JG, Diaz-Balteiro L, McDill ME, Rodriguez LCE. The management of industrial forest plantations: theoretical foundations and applications [Internet]. Dordrecht: Springer Netherlands; 2014. [cited 2023 Apr 11]. Available from: https://link.springer.com/10.1007/978-94-017-8899-1

    Book  Google Scholar 

  2. Barrette J, Achim A, Auty D. Impact of intensive forest management practices on wood quality from conifers: literature review and reflection on future challenges. Curr For Rep. 2023;9:101–30.

    Article  Google Scholar 

  3. Ameray A, Bergeron Y, Valeria O, Montoro Girona M, Cavard X. Forest carbon management: a review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Curr For Rep. 2021;7:245–66.

    Article  Google Scholar 

  4. Mair C, Stern T. Cascading utilization of wood: a matter of circular economy? Curr For Rep. 2017;3:281–95.

    Article  Google Scholar 

  5. Gosselin A, Blanchet P, Lehoux N, Cimon Y. Main motivations and barriers for using wood in multi-story and non-residential construction projects. BioResources. 2017;12:546–70.

    CAS  Google Scholar 

  6. Arregi B, Garay-Martinez R, Astudillo J, García M, Ramos JC. Experimental and numerical thermal performance assessment of a multi-layer building envelope component made of biocomposite materials. Energy Build. 2020;214:109846.

    Article  Google Scholar 

  7. UNEP. Buildings and climate change: summary for decision makers. Paris: UNEP DTI, Sustainable Consumption&Production Branch; 2009.

    Google Scholar 

  8. Brozovsky J, Radivojevic J, Simonsen A. Assessing the impact of urban microclimate on building energy demand by coupling CFD and building performance simulation. J Build Eng. 2022;55:104681. 

  9. Pathak M, Slade R, Shukla PR, Skea J, Pichs-Madruga R, Ürge-Vorsatz D. Technical summary. In: Climate change 2022: mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Internet]; 2022. Available from: https://www.cambridge.org/core/product/identifier/9781009157926%23pre3/type/book_part.

    Google Scholar 

  10. Cabral MR, Blanchet P. A state of the art of the overall energy efficiency of wood buildings—an overview and future possibilities. Materials. 2021;14:1848.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  11. Blanchet P, Pepin S. Trends in chemical wood surface improvements and modifications: a review of the last five years. Coatings. 2021;11:1514.

    Article  CAS  Google Scholar 

  12. Hassan OAB, Öberg F, Gezelius E. Cross-laminated timber flooring and concrete slab flooring: a comparative study of structural design, economic and environmental consequences. J Build Eng. 2019;26:100881.

    Article  Google Scholar 

  13. Li J, Rismanchi B, Ngo T. Feasibility study to estimate the environmental benefits of utilising timber to construct high-rise buildings in Australia. Build Environ. 2019;147:108–20.

    Article  CAS  Google Scholar 

  14. Karacabeyli E, Lum C. Technical guide for the design and construction of tall wood buildings in Canada. FPInnovations [Internet]; 2014. [cited 2022 Aug 23]; Available from: https://web.fpinnovations.ca/tallwood/

    Google Scholar 

  15. Smith I, Frangi A. Use of timber in tall multi-storey buildings [Internet]. 1st ed. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE); 2014. [cited 2022 Aug 23]. Available from: https://structurae.net/en/literature/id/10376684

    Book  Google Scholar 

  16. Premrov M, Kuhta M. Influence of fasteners disposition on behaviour of timber-framed walls with single fibre–plaster sheathing boards. Constr Build Mater. 2009;23:2688–93.

    Article  Google Scholar 

  17. Pei S, van de Lindt JW, Ni C, Pryor SE. Experimental seismic behavior of a five-storey double-midply wood shear wall in a full scale building. Can J Civ Eng. 2010;37:1261–9.

    Article  Google Scholar 

  18. Filiatrault A, Isoda H, Folz B. Hysteretic damping of wood framed buildings. Eng Struct. 2003;25:461–71.

    Article  Google Scholar 

  19. Tesfamariam S, Wakashima Y, Skandalos K. Damped timber shear wall: shake-table tests and analytical models. J Struct Eng. 2021;147:04021064.

    Article  Google Scholar 

  20. Wakashima Y, Shimizu H, Ishikawa K, Fujisawa Y, Tesfamariam S. Friction-based connectors for timber shear walls: static experimental tests. J Archit Eng. 2019;25:04019006.

    Article  Google Scholar 

  21. Wakashima Y, Ishikawa K, Shimizu H, Kitamori A, Matsubara D, Tesfamariam S. Dynamic and long-term performance of wood friction connectors for timber shear walls. Eng Struct. 2021;241:112351.

    Article  Google Scholar 

  22. • Picard L, Blanchet P, Bégin-Drolet A. Assembly solution for modular buildings: development of an automated connecting device for light-framed structures. Buildings. 2022;12:672. An explanation of how to design a new constructive system is provided in this paper.

    Article  Google Scholar 

  23. Loss C, Piazza M, Zandonini R. Connections for steel–timber hybrid prefabricated buildings. Part II: innovative modular structures. Constr Build Mater. 2016;122:796–808.

    Article  Google Scholar 

  24. Sharafi P, Mortazavi M, Samali B, Ronagh H. Interlocking system for enhancing the integrity of multi-storey modular buildings. Autom Constr. 2018;85:263–72.

    Article  Google Scholar 

  25. Sendanayake SV, Thambiratnam DP, Perera N, Chan T, Aghdamy S. Seismic mitigation of steel modular building structures through innovative inter-modular connections. Heliyon. 2019;5:e02751.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lacey AW, Chen W, Hao H, Bi K. New interlocking inter-module connection for modular steel buildings: simplified structural behaviours. Eng Struct. 2021;227:111409.

    Article  Google Scholar 

  27. Srisangeerthanan S, Javad Hashemi M, Rajeev P, Gad E, Fernando S. Development of an innovative boltless connection for multistory modular buildings. J Struct Eng. 2022;148:04022085.

    Article  Google Scholar 

  28. Malo KA, Abrahamsen RB, Bjertnæs MA. Some structural design issues of the 14-storey timber framed building “Treet” in Norway. Eur J Wood Wood Prod. 2016;74:407–24.

    Article  Google Scholar 

  29. Connolly T, Loss C, Iqbal A, Tannert T. Feasibility study of mass-timber cores for the ubc tall wood building. Buildings. 2018;8:98.

    Article  Google Scholar 

  30. Poirier E, Staub-French S, Pilon A, Fallahi A, Teshnizi Z, Tannert T, et al. Design process innovation on brock commons tallwood house. Constr Innov. 2021;22:23–40.

    Article  Google Scholar 

  31. Woschitz R, Zotter J. High-rise timber building HoHo Vienna–the structural concept. Österr Ing Archit Z. 2017;162:63–8.

    Google Scholar 

  32. Brandner R, Flatscher G, Ringhofer A, Schickhofer G, Thiel A. Cross laminated timber (CLT): overview and development. Eur J Wood Wood Prod. 2016;74:331–51.

    Article  CAS  Google Scholar 

  33. Government of Canada. National Building Code of Canada 2020 [Internet]. National Research Council Canada, NRCC-CONST-56435E Canada: National Research Council Canada.  2022. p. 1–792. Available from: https://nrc-publications.canada.ca/eng/view/object/?id=515340b5-f4e0-4798-be69-692e4ec423e8.

  34. Council IC. 2021 International Building Code. International Code Council; 2020.

    Google Scholar 

  35. Shahnewaz M, Dickof C, Tannert T. Seismic behavior of balloon frame clt shear walls with different ledgers. J Struct Eng. 2021;147:04021137.

    Article  Google Scholar 

  36. Chen Z, Popovski M. Mechanics-based analytical models for balloon-type cross-laminated timber (CLT) shear walls under lateral loads. Eng Struct. 2020;208:109916.

    Article  Google Scholar 

  37. • Tannert T, Loss C. Contemporary and novel hold-down solutions for mass timber shear walls. Buildings. 2022;12:202. A large number of recent CLT connectors are included in this document. CLT panels with various connectors subjected to lateral loading are shown along with photos of the connectors, typical connector failures, and test curves.

    Article  Google Scholar 

  38. CSA (Canadian Standards Association). Engineering design in wood. Toronto: CSA; 2019.

    Google Scholar 

  39. Schneider J, Tannert T, Tesfamariam S, Stiemer SF. Experimental assessment of a novel steel tube connector in cross-laminated timber. Eng Struct. 2018;177:283–90.

    Article  Google Scholar 

  40. Brown JR, Li M, Tannert T, Moroder D. Experimental study on orthogonal joints in cross-laminated timber with self-tapping screws installed with mixed angles. Eng Struct. 2021;228:111560.

    Article  Google Scholar 

  41. Lu B, Lu W, Zhong M, Wu W, Zhou P. Experimental investigation and analytical model of cross-laminated timber wall with coupled U-shaped flexural plate connectors. Constr Build Mater. 2021;307:124984.

    Article  Google Scholar 

  42. Asgari H, Tannert T, Ebadi MM, Loss C, Popovski M. Hyperelastic hold-down solution for CLT shear walls. Constr Build Mater. 2021;289:123173.

    Article  Google Scholar 

  43. Xilin L, Dayang W, Ying Z. State-of-the-art of earthquake resilient structures. J Build Struct. 2018;39:10–21.

    Google Scholar 

  44. Pierobon F, Huang M, Simonen K, Ganguly I. Environmental benefits of using hybrid CLT structure in midrise non-residential construction: an LCA based comparative case study in the U.S. Pacific Northwest. J Build Eng. 2019;26:100862.

    Article  Google Scholar 

  45. Dipasquale L, Correia M, Dipasquale L, Mecca S, editors. Terra Europae. Earthen Architecture in the European Union, ETS, Pisa; 2011. p. 216.

  46. Kolb J. Holzbau mit system: tragkonstruktion und schichtaufbau der bauteile [Internet]. 2., aktualisierte Aufl. Holzforschung Dg Deutsche Gesellschaft Für. Basel Berlin: De Gruyter; 2007. Available from: https://www.degruyter.com/document/doi/10.1007/978-3-7643-8300-8/html

    Book  Google Scholar 

  47. Muller P. Decke aus hochkantig stehenden holzbohlen oder holzbrettern und betondeckschicht [Internet]. 1921 [cited 2022 Aug 24]. Available from: https://patents.google.com/patent/DE334431C/fr

    Google Scholar 

  48. Richart FE, Williams CB Jr. Tests of Composite Timber-Concrete Beams. ACI Journal Proceedings. 1943;39:253–76.

    Google Scholar 

  49. Parisi MA, Piazza M. Restoration and strengthening of timber structures: principles, criteria, and examples. Pract Period Struct Des Constr. 2007;12:177–85.

    Article  Google Scholar 

  50. Boscato G, Mora TD, Peron F, Russo S, Romagnoni P. A new concrete-glulam prefabricated composite wall system: thermal behavior, life cycle assessment and structural response. J Build Eng. 2018;19:384–401.

    Article  Google Scholar 

  51. Yeoh D, Fragiacomo M, De Franceschi M, Heng BK. State of the art on timber-concrete composite structures: literature review. J Struct Eng. 2011;137:1085–95.

    Article  Google Scholar 

  52. Rodrigues JN, Dias AMPG, Providência P. Timber-concrete composite bridges: state-of-the-art review. BioResources. 2013;8:6630–49.

    Article  CAS  Google Scholar 

  53. Jiang Y, Crocetti R. CLT-concrete composite floors with notched shear connectors. Constr Build Mater. 2019;195:127–39.

    Article  CAS  Google Scholar 

  54. Quang Mai K, Park A, Nguyen KT, Lee K. Full-scale static and dynamic experiments of hybrid CLT–concrete composite floor. Constr Build Mater. 2018;170:55–65.

    Article  Google Scholar 

  55. Taylor B, Barbosa AR, Sinha A. In-plane shear cyclic performance of spline cross-laminated timber-concrete composite diaphragms. J Struct Eng. 2021;147:04021148.

    Article  Google Scholar 

  56. Bathon L, Graf M. A continuous wood-concrete-composite system. In: Proceeding of World Conference of Timber Engineering (WCTE 2000). Vancouver, Canada: University of British Columbia; 2000.

    Google Scholar 

  57. Piazza M, Ballerini M. Experimental and numerical results on timber-concrete composite floors with different connection systems. Proceedings of the 6th World Conference on Timber Engineering(WCTE. Vancouver. Canada: University of British Columbia; 2000. p. 2000.

    Google Scholar 

  58. Bathon LA, Bletz O. Long term performance of continuous wood-concrete-composite systems. In: 9th World Conference on Timber Engineering WCTE 2006. Portland, OR, USA; 2006.

  59. Daňková J, Mec P, Šafrata J. Experimental investigation and performance of timber-concrete composite floor structure with non-metallic connection system. Eng Struct. 2019;193:207–18.

    Article  Google Scholar 

  60. Estévez-Cimadevila J, Martín-Gutiérrez E, Suárez-Riestra F, Otero-Chans D, Vázquez-Rodríguez JA. Timber-concrete composite structural flooring system. J Build Eng. 2022;49:104078.

    Article  Google Scholar 

  61. Owolabi D, Loss C. Experimental and numerical study on the bending response of a prefabricated composite CLT-steel floor module. Eng Struct. 2022;260:114278.

    Article  Google Scholar 

  62. Gao Y, Xu F, Meng X, Zhang Y, Yang H. Experimental and numerical study on the lateral torsional buckling of full-scale steel-timber composite beams. Adv Struct Eng. 2022;25:522–40.

    Article  Google Scholar 

  63. Ghanbari Ghazijahani T, Jiao H, Holloway D. Rectangular steel tubes with timber infill and CFRP confinement under compression: experiments. J Constr Steel Res. 2015;114:196–203.

    Article  Google Scholar 

  64. Erchinger C, Frangi A, Fontana M. Fire design of steel-to-timber dowelled connections. Eng Struct. 2010;32:580–9.

    Article  Google Scholar 

  65. Loss C, Rossi S, Tannert T. In-plane stiffness of hybrid steel–cross-laminated timber floor diaphragms. J Struct Eng. 2018;144:04018128.

    Article  Google Scholar 

  66. Chen Z, Popovski M, Iqbal A. Structural performance of post-tensioned CLT shear walls with energy dissipators. J Struct Eng. 2020;146:04020035.

    Article  Google Scholar 

  67. Orlowski K, Baduge SK, Mendis P. Prefabricated composite steel-timber stiffened wall systems with post-tensioning: structural analysis and experimental investigation under vertical axial load. J Struct Eng. 2021;147:04020325.

    Article  Google Scholar 

  68. Li Z, Chen F, He M, Zhou R, Cui Y, Sun Y, et al. Lateral performance of self-centering steel–timber hybrid shear walls with slip-friction dampers: experimental investigation and numerical simulation. J Struct Eng. 2021;147:04020291.

    Article  Google Scholar 

  69. He M, Li Z, Lam F, Ma R, Ma Z. Experimental investigation on lateral performance of timber-steel hybrid shear wall systems. J Struct Eng. 2014;140:04014029.

    Article  Google Scholar 

  70. Ricles JM, Sause R, Garlock MM, Zhao C. Posttensioned seismic-resistant connections for steel frames. J Struct Eng. 2001;127:113–21.

    Article  Google Scholar 

  71. Palermo A, Pampanin S, Buchanan A, Newcombe M. Seismic design of multi-storey buildings using laminated veneer lumber (LVL). 2005 [cited 2022 Aug 25]; Available from: https://ir.canterbury.ac.nz/handle/10092/266

    Google Scholar 

  72. Niederwestberg J, Zhou J, Chui Y-H. Mechanical properties of innovative, multi-layer composite laminated panels. Buildings. 2018;8:142.

    Article  Google Scholar 

  73. Xu B-H, Zhang S-D, Zhao Y-H, Bouchaïr A. Rolling shear properties of hybrid cross-laminated timber. J Mater Civ Eng. 2021;33:04021159.

    Article  CAS  Google Scholar 

  74. Namari S, Drosky L, Pudlitz B, Haller P, Sotayo A, Bradley D, et al. Mechanical properties of compressed wood. Constr Build Mater. 2021;301:124269.

    Article  Google Scholar 

  75. El-Houjeyri I, Thi V-D, Oudjene M, Khelifa M, Rogaume Y, Sotayo A, et al. Experimental investigations on adhesive free laminated oak timber beams and timber-to-timber joints assembled using thermo-mechanically compressed wood dowels. Constr Build Mater. 2019;222:288–99.

    Article  Google Scholar 

  76. Bui TA, Oudjene M, Lardeur P, Khelifa M, Rogaume Y. Towards experimental and numerical assessment of the vibrational serviceability comfort of adhesive free laminated timber beams and CLT panels assembled using compressed wood dowels. Eng Struct. 2020;216:110586.

    Article  Google Scholar 

  77. Bui TA, Lardeur P, Oudjene M, Park J. Numerical modelling of the variability of the vibration frequencies of multi-layered timber structures using the modal stability procedure. Compos Struct. 2022;285:115226.

    Article  Google Scholar 

  78. Gamerro J, Bocquet JF, Weinand Y. A calculation method for interconnected timber elements using wood-wood connections. Buildings. 2020;10:61.

    Article  Google Scholar 

  79. Khidmat RP, Fukuda H, Kustiani. Design optimization of hyperboloid wooden house concerning structural, cost, and daylight performance. Buildings. 2022;12:110.

    Article  Google Scholar 

  80. Robeller C. Integral mechanical attachment for timber folded plate structures. Lausanne: EPFL; 2015.

    Google Scholar 

  81. Rogeau N, Latteur P, Weinand Y. An integrated design tool for timber plate structures to generate joints geometry, fabrication toolpath, and robot trajectories. Autom Constr. 2021;130:103875.

    Article  Google Scholar 

  82. Kunic A, Naboni R, Kramberger A, Schlette C. Design and assembly automation of the Robotic Reversible Timber Beam. Autom Constr. 2021;123:103531.

    Article  Google Scholar 

  83. Jockwer R, Wiehle P, Palma P, Klippel M, Wapp A, Frangi A, et al. Structural behaviour and design of timber connections with dowels and slotted-in plates made of bamboo composite. In: Proceedings of the 2018 World Conference on Timber Engineering [Internet]. World Conference on Timber Engineering (WCTE); 2018. [cited 2022 Aug 25]. Available from: https://www.research-collection.ethz.ch/handle/20.500.11850/287615.

    Google Scholar 

  84. Xu B-H, Liu K, Zhao Y-H, Bouchaïr A. Pullout resistance of densified wood dowel welded by rotation friction. J Mater Civ Eng. 2022;34:04022186.

    Article  CAS  Google Scholar 

  85. Mehra S, O’Ceallaigh C, Sotayo A, Guan Z, Harte AM. Experimental characterisation of the moment-rotation behaviour of beam-beam connections using compressed wood connectors. Eng Struct. 2021;247:113132.

    Article  Google Scholar 

  86. Mehra S, O’Ceallaigh C, Sotayo A, Guan Z, Harte AM. Experimental investigation of the moment-rotation behaviour of beam-column connections produced using compressed wood connectors. Constr Build Mater. 2022;331:127327.

    Article  CAS  Google Scholar 

  87. Naud N, Sorelli L, Salenikovich A, Cuerrier-Auclair S. Fostering GLULAM-UHPFRC composite structures for multi-storey buildings. Eng Struct. 2019;188:406–17.

    Article  Google Scholar 

  88. Lamothe S, Sorelli L, Blanchet P, Galimard P. Lightweight and slender timber-concrete composite floors made of CLT-HPC and CLT-UHPC with ductile notch connectors. Eng Struct. 2021;243:112409.

    Article  Google Scholar 

  89. Huuhka S, Vestergaard I. Building conservation and the circular economy: a theoretical consideration. J Cult Heritage Manag Sustain Dev. 2019;10:29–40.

    Article  Google Scholar 

  90. Huang L, Krigsvoll G, Johansen F, Liu Y, Zhang X. Carbon emission of global construction sector. Renew Sust Energ Rev. 2018;81:1906–16.

    Article  CAS  Google Scholar 

  91. Viholainen N, Kylkilahti E, Autio M, Pöyhönen J, Toppinen A. Bringing ecosystem thinking to sustainability-driven wooden construction business. J Clean Prod. 2021;292:126029.

    Article  Google Scholar 

  92. Göswein V, Reichmann J, Habert G, Pittau F. Land availability in Europe for a radical shift toward bio-based construction. Sustain Cities Soc. 2021;70:102929.

    Article  Google Scholar 

  93. Alapieti T, Mikkola R, Pasanen P, Salonen H. The influence of wooden interior materials on indoor environment: a review. Eur J Wood Wood Prod. 2020;78:617–34.

    Article  CAS  Google Scholar 

  94. • Pomponi F, Hart J, Arehart JH, D’Amico B. Buildings as a global carbon sink? A reality check on feasibility limits. One Earth. 2020;3:157–61. This paper introduces the topic about materials carbon storing in the built environment

    Article  ADS  Google Scholar 

  95. Himmetoğlu S, Delice Y, Kızılkaya Aydoğan E, Uzal B. Green building envelope designs in different climate and seismic zones: multi-objective ANN-based genetic algorithm. Sustain Energy Technol Assess. 2022;53:102505.

    Google Scholar 

  96. Wang JS, Demartino C, Xiao Y, Li YY. Thermal insulation performance of bamboo- and wood-based shear walls in light-frame buildings. Energy Build. 2018;168:167–79.

    Article  Google Scholar 

  97. Rahiminejad M, Khovalyg D. Review on ventilation rates in the ventilated air-spaces behind common wall assemblies with external cladding. Build Environ. 2021;190:107538.

    Article  Google Scholar 

  98. Riahinezhad M, Hallman M, Masson JF. Critical review of polymeric building envelope materials: degradation, durability and service life prediction. Buildings. 2021;11:299.

    Article  Google Scholar 

  99. Yu G, Yu J, Hu Y, Cheng X, Liu H, Liu W. Moisture transport analysis for integrated structures of flat plate solar collector and building envelope. Sol Energy. 2021;217:145–54.

    Article  ADS  Google Scholar 

  100. Hill C, Kymäläinen M, Rautkari L. Review of the use of solid wood as an external cladding material in the built environment. J Mater Sci. 2022;57(20):9031–76.

    Article  ADS  CAS  Google Scholar 

  101. Zhang K, Richman R. Wood sheathing durability from moisture sorption isotherm variability due to age and temperature. Constr Build Mater. 2021;273:121672.

    Article  Google Scholar 

  102. Reich BZ, Ge H, Wang J. Effect of vapor diffusion port on the hygrothermal performance of wood-frame walls. J Build Eng. 2021;39:102280.

    Article  Google Scholar 

  103. Hussain A, Blanchet P. Preparation of breathable cellulose based polymeric membranes with enhanced water resistance for the building industry. Materials. 2021;14:4310.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  104. Fawaier M, Bokor B. Dynamic insulation systems of building envelopes: a review. Energy Build. 2022;270:112268.

    Article  Google Scholar 

  105. Wang L, Ge H. Stochastic modelling of hygrothermal performance of highly insulated wood framed walls. Build Environ. 2018;146:12–28.

    Article  CAS  Google Scholar 

  106. Girma GM, Tariku F. Experimental investigation of cavity air gap depth for enhanced thermal performance of ventilated rain-screen walls. Build Environ. 2021;194:107710.

    Article  Google Scholar 

  107. Caron-Rousseau A, Blanchet P, Gosselin L. Parametric study of lightweight wooden wall assemblies for cold and subarctic climates using external insulation. Buildings. 2022;12:1031.

    Article  Google Scholar 

  108. Iffa E, Tariku F, Simpson WY. Highly insulated wall systems with exterior insulation of polyisocyanurate under different facer materials: material characterization and long-term hygrothermal performance assessment. Materials. 2020;13:3373.

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  109. Viljanen K, Lü X, Puttonen J. Factors affecting the performance of ventilation cavities in highly insulated assemblies. J Build Phys. 2021;45:67–110.

    Article  Google Scholar 

  110. Feldt Jensen N, Bjarløv SP, Johnston CJ, Fabian C, Pold H, Hansen MH, et al. Hygrothermal assessment of north-facing, cold attic spaces under the eaves with varying structural roof scenarios. J Build Phys. 2020;44:3–36.

    Article  Google Scholar 

  111. Yang W, Wang Y, Liu J. Optimization of the thermal conductivity test for building insulation materials under multifactor impact. Constr Build Mater. 2022;332:127380.

    Article  Google Scholar 

  112. Tilioua A, Libessart L, Lassue S. Characterization of the thermal properties of fibrous insulation materials made from recycled textile fibers for building applications: theoretical and experimental analyses. Appl Therm Eng. 2018;142:56–67.

    Article  Google Scholar 

  113. Wang Y, Liu K, Liu Y, Wang D, Liu J. The impact of temperature and relative humidity dependent thermal conductivity of insulation materials on heat transfer through the building envelope. J Build Eng. 2022;46:103700.

    Article  Google Scholar 

  114. Abu-Jdayil B, Mourad A-H, Hittini W, Hassan M, Hameedi S. Traditional, state-of-the-art and renewable thermal building insulation materials: an overview. Constr Build Mater. 2019;214:709–35.

    Article  Google Scholar 

  115. •• Biswas K, Patel T, Shrestha S, Smith D, Desjarlais A. Whole building retrofit using vacuum insulation panels and energy performance analysis. Energy Build. 2019;203:109430. An interesting study comparing innovative insulating materials (VIP) versus conventional insulating material tested at full scale.

    Article  Google Scholar 

  116. Hung Anh LD, Pásztory Z. An overview of factors influencing thermal conductivity of building insulation materials. J Build Eng. 2021;44:102604.

    Article  Google Scholar 

  117. Lakatos Á. Stability investigations of the thermal insulating performance of aerogel blanket. Energy Build. 2019;185:103–11.

    Article  Google Scholar 

  118. Liu S, Zhu K, Cui S, Shen X, Tan G. A novel building material with low thermal conductivity: rapid synthesis of foam concrete reinforced silica aerogel and energy performance simulation. Energy Build. 2018;177:385–93.

    Article  Google Scholar 

  119. Dove CA, Bradley FF, Patwardhan SV. A material characterization and embodied energy study of novel clay-alginate composite aerogels. Energy Build. 2019;184:88–98.

    Article  Google Scholar 

  120. Cai C, Wei Z, Huang Y, Fu Y. Wood-inspired superelastic MXene aerogels with superior photothermal conversion and durable superhydrophobicity for clean-up of super-viscous crude oil. Chem Eng J. 2021;421:127772.

    Article  CAS  Google Scholar 

  121. Buratti C, Belloni E, Merli F, Zinzi M. Aerogel glazing systems for building applications: a review. Energy Build. 2021;231:110587.

    Article  Google Scholar 

  122. •• Berardi U. Aerogel-enhanced systems for building energy retrofits: Insights from a case study. Energy Build. 2018;159:370–81. This document presents interesting insights about insulation materials as a possibility to improve the envelope performance.

    Article  Google Scholar 

  123. Al-Yasiri Q, Szabó M. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: a comprehensive analysis. J Build Eng. 2021;36:102122.

    Article  Google Scholar 

  124. Biswas K, Shrestha S, Hun D, Atchley J. Thermally anisotropic composites for improving the energy efficiency of building envelopes. Energies. 2019;12:3783.

    Article  CAS  Google Scholar 

  125. Jingchen X, Keyan Y, Yucheng Z, Yuxiang Y, Jianmin C, Liping C, et al. Form-stable phase change material based on fatty acid/wood flour composite and PVC used for thermal energy storage. Energy Build. 2020;209:109663.

    Article  Google Scholar 

  126. Fuentes-Sepúlveda R, García-Herrera C, Vasco DA, Salinas-Lira C, Ananías RA. Thermal characterization of pinus radiata wood vacuum-impregnated with octadecane. Energies. 2020;13:942.

    Article  Google Scholar 

  127. Chang SJ, Wi S, Cho HM, Jeong SG, Kim S. Numerical analysis of phase change materials/wood–plastic composite roof module system for improving thermal performance. J Ind Eng Chem. 2020;82:413–23.

    Article  CAS  Google Scholar 

  128. Yang YK, Kim MY, Chung MH, Park JC. PCM cool roof systems for mitigating urban heat island - an experimental and numerical analysis. Energy Build. 2019;205:109537.

    Article  Google Scholar 

  129. Mathis D, Blanchet P, Lagière P, Landry V. Performance of wood-based panels integrated with a bio-based phase change material: a full-scale experiment in a cold climate with timber-frame huts. Energies. 2018;11:3093.

    Article  CAS  Google Scholar 

  130. King MFL, Rao PN, Sivakumar A, Mamidi VK, Richard S, Vijayakumar M, et al. Thermal performance of a double-glazed window integrated with a phase change material (PCM). Mater Today: Proc. 2022;50:1516–21.

    Google Scholar 

  131. Kurnia JC, Haryoko LAF, Taufiqurrahman I, Chen L, Jiang L, Sasmito AP. Optimization of an innovative hybrid thermal energy storage with phase change material (PCM) wall insulator utilizing Taguchi method. J Energy Storage. 2022;49:104067.

    Article  Google Scholar 

  132. Lee KO, Medina MA, Sun X, Jin X. Thermal performance of phase change materials (PCM)-enhanced cellulose insulation in passive solar residential building walls. Sol Energy. 2018;163:113–21.

    Article  ADS  Google Scholar 

  133. Kishore RA, Bianchi MVA, Booten C, Vidal J, Jackson R. Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings. Appl Therm Eng. 2021;187:116568.

    Article  Google Scholar 

  134. Brohez S, Caravita I. Fire induced pressure in airthigh houses: experiments and FDS validation. Fire Saf J. 2020;114:103008.

    Article  CAS  Google Scholar 

  135. Li J, Prétrel H, Suard S, Beji T, Merci B. Experimental study on the effect of mechanical ventilation conditions and fire dynamics on the pressure evolution in an air-tight compartment. Fire Saf J. 2021;125:103426.

    Article  Google Scholar 

  136. Samanta A, Höglund M, Samanta P, Popov S, Sychugov I, Maddalena L, et al. Charge regulated diffusion of silica nanoparticles into wood for flame retardant transparent wood. Adv Sustain Syst. 2022;6:2100354.

    Article  CAS  Google Scholar 

  137. Liu KS, Zheng XF, Hsieh CH, Lee SK. The application of silica-based aerogel board on the fire resistance and thermal insulation performance enhancement of existing external wall system retrofit. Energies. 2021;14:4518.

    Article  CAS  Google Scholar 

  138. Yu J, Yang D, He Q, Du B, Zhang S, Hu M. Strong, durable and fire-resistant glass fiber-reinforced bamboo scrimber. Ind Crop Prod. 2022;181:114783.

    Article  Google Scholar 

  139. Xu E, Zhang Y, Lin L. Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol. Polymers. 2020;12:1632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ab Latib H, Wai Cheong L, Halis R, Roslan Mohamad Kasim M, Yan Yi L, Ratnasingam J, et al. The prospects of wooden building construction in Malaysia: current state of affairs. BioResources. 2019;14:9840–52.

    Article  CAS  Google Scholar 

  141. Ma T, Li L, Mei C, Wang Q, Guo C. Construction of sustainable, fireproof and superhydrophobic wood template for efficient oil/water separation. J Mater Sci. 2021;56:5624–36.

    Article  ADS  CAS  Google Scholar 

  142. Mohd Ghani RS. A review of different barriers and additives to reduce boron movement in boron dual treated wood. Prog Org Coat. 2021;160:106523.

    Article  CAS  Google Scholar 

  143. Iringova A, Vandlickova D, Divis M. Impact of the fire and acoustic protection on the composition of lightweight wood-based cladding envelopes in the construction of apartment buildings in passive standard. IOP Conf Ser: Mater Sci Eng. 2019;661:012085.

    Article  CAS  Google Scholar 

  144. Bastien D, Winther-Gaasvig M. Influence of driving rain and vapour diffusion on the hygrothermal performance of a hygroscopic and permeable building envelope. Energy. 2018;164:288–97.

    Article  Google Scholar 

  145. Berardi U, Jafarpur P. Assessing the impact of climate change on building heating and cooling energy demand in Canada. Renew Sust Energ Rev. 2020;121:109681.

    Article  Google Scholar 

  146. Mathur U, Damle R. Impact of air infiltration rate on the thermal transmittance value of building envelope. J Build Eng. 2021;40:102302.

    Article  Google Scholar 

  147. Zhou S, Razaqpur AG. Efficient heating of buildings by passive solar energy utilizing an innovative dynamic building envelope incorporating phase change material. Renew Energy. 2022;197:305–19.

    Article  Google Scholar 

  148. Li Y, Zhao Y, Chi Y, Hong Y, Yin J. Shape-morphing materials and structures for energy-efficient building envelopes. Mater Today Energy. 2021;22:100874.

    Article  Google Scholar 

  149. •• Khezri M, KJR R. Functionalising buckling for structural morphing in kinetic façades: concepts, strategies and applications. Thin-Walled Struct. 2022;180:109749. This paper presents a very clear overview about shape-morphing building envelope.

    Article  Google Scholar 

  150. •• Bucklin O, Menges A, Amtsberg F, Drexler H, Rohr A, Krieg OD. Mono-material wood wall: novel building envelope using subtractive manufacturing of timber profiles to improve thermal performance and airtightness of solid wood construction. Energy Build. 2022;254:111597. This article develops documents and evaluates on a pilot scale a new methodology for building the wooden envelope.

    Article  Google Scholar 

Download references

Funding

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for financial support through its IRC and CRD programs (IRCPJ 461745-18 and RDCPJ 514294-17), the industrial partners of the NSERC Industrial Research Chair on Eco-responsible Wood Construction (CIRCERB), the industrial partners of the Industrialized Construction Initiative (ICI), and the Créneau Accord Bois Chaudière-Appalaches (BOCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Blanchet.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanchet, P., Perez, C. & Cabral, M.R. Wood Building Construction: Trends and Opportunities in Structural and Envelope Systems. Curr. For. Rep. 10, 21–38 (2024). https://doi.org/10.1007/s40725-023-00196-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-023-00196-z

Keywords

Navigation